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Quantum Groups: A Review 

L~ C. Biedenharn 1 

Received April 30, 1993 

The recent development of quantum groups is summarized from the point of 
view of quantum physics. The emphasis is on the ideas, concepts, and motiva- 
tion of these new developments. 

1. INTRODUCTION 

One of the most interesting recent developments in quantum physics, 
and mathematics, is that of  a quantum group. This structure was developed, 
nearly simultaneously, in several very different ways: (a) in the statistical 
mechanics of Ising-type models (Jimbo, 1985, 1986) via the McGui re -  
Yang-Baxter  equation (a solvability condition), (b) in inverse scattering 
theory (Sklyanin, 1982; Kulish and Reshetikhin, 1983), and (c) by mathe- 
maticians (Connes, 1985) seeking to define noncommutative differential 
geometry. It is our purpose in reviewing these developments primarily to 
explain the ideas, concepts, and particularly the motivations of  this new 
work and only secondarily to cite the more recent achievements. 

The precise definition of  a quantum group (Section 2) is, for a 
physicist, rather formidable and inaccessible. Let us begin instead by noting 
that the quantum group structure combines two basic ideas: (a) the 
deformation of  an algebraic structure and (b) the idea (new to quantum 
physics) of  a (noncommutative) comultiplication. The idea of  a deformation 
is not new in physics: the Poincar6 group of  Einsteinian relativity can be 
considered to be a deformation of the Galilei group of  Newtonian relativity 
(which is recovered in the limit c ~ oo) and quantum mechanics can be 
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considered a deformation of classical mechanics (which is recovered in the 
limit of h--* 0). More precisely, the structure constants of the deformed 
algebra are taken to be functions of a parameter which in a fixed limit become 
the original structure constants. (For comultiplication see Sections 2 and 4.) 

As an indication of the importance of quantum groups, let us note the 
following list of different fields in which this concept is currently being 
explored: 

(a) Solvable two-dimensional systems, via inverse scattering tech- 
niques (Faddeev et al., 1988; Kulish and Reshetikhin, 1989; Sklyanin, 1985; 
Burroughs, 1990). 

(b) Solvable lattice models in statistical mechanics; anisotropic spin 
chain Hamiltonians (de Vega, 1989; Pasquier and Saleur, 1990; Batchelor 
et al., 1990). 

(c) Rational conformal field theory (Alvarez-Gaum6 et al., 1989; 
Moore and Reshetikhin, 1989; G6mez and Sierra, 1990). 

(d) Two-dimensional gravity; three-dimensional Chern-Simons the- 
ory (Gervais, 1990a,b; Witten, 1990; Guadagnini et al., 1990; Majid, 1990). 

(e) Knot theory applications (Jones, 1985; Kauffman, 1990). 
(f) q-Analogs to classical special functions and q-group interpreta- 

tions (Gustafson, 1987; Milne, 1988; Koornwinder, 1989; Biedenharn and 
Lohe, 1991). 

(g) Noncommutative geometry (Connes, 1985; Woronowicz, 1987, 
1990; Manin, 1988). 

(h) Nonstandard quantum statistics (Greenberg, 1991). 
(i) Quantum Minkowski space and a q-Poincar6 group (Ogievetsky et 

al., 1991a,b). 

2. DEFINITION OF A QUANTUM GROUP 

The formal definition of a quantum group will be given here--but we 
hasten to add that the reader should probably only glance at this definition 
and push on to the explanations that follow! 

The formal definition of a quantum group has been given by Drinfeld 
(1987) and by Manin (1988): A quantum group is defined to be a (not 
necessarily commutative)  H o p f  algebra. (Hopf algebra = bialgebra with an 
antipode, see below.) 

2.1. Bialgebras 

Let A be a k-module (k = field). Then a bialgebra structure on A is 
defined by four morphisms: 

rn A q 

A | A ---* A ---~ A | A and k ---* A ----~ k 
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satisfying the following axioms: 

Associativity : 

coassociativity : 

Unit: 

counit: 

m |  m 
A | 1 7 4  ,A |  

tl 11 id | m 
A | 1 7 4  , A |  

A A |  
A - - - + A |  , A |  

fl II 
A i d |  

A - - + A |  , A | 1 7 4  

A |  

A = A | 1 7 4  
id 

A |  

A----+ A = k |  = A |  
id 

connecting axiom (S(z3) = exchange of  2nd and 
product): 

m A 
A |  A ---~ A |  

~| l Tm| 
A | 1 7 4 1 7 4  sc2S), A | 1 7 4 1 7 4  

3rd places in tensor 

2.2. Antipode 

An antipode of a bialgebra (A, m, A) is a linear map 7: A ~ A such 
that the following diagram is commutative: 

"~| m 
A----~A|  > A |  

tl II 
c q id 

A ~ k , .4 ----~A 

Ii It 
A m 

A - - - * A |  ,A |  
id|  
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3. THE QUANTUM GROUP SUq(2) 
The algebraic aspects of a quantum group can be most easily under- 

stood by a prototypical example: the deformed quantal angular momentum 
group SUq(2). This structure is generated by three operators, J q ,  Jq_, and 
Jq, which obey the commutation relations 

[Jq, Jq_+] = • (3.1) 

q~ _ q - 4  
Jq Jq_ q E ~  (3.2) [ +' ] q l / 2 _ q  1 / 2 '  

Remarks. (a) The commutator in (3.2) is not 2Jz as usual, but an 
infinite series (for generic q) involving all odd powers: ( jq)l ,  ( j q ) 3 , . . . .  
Each such power is a linearly independent operator in the enveloping 
algebra; accordingly, the Lie algebra of SUq(2) is not of finite dimension. 

(b) For q ~  1, the right-hand side of equation (3.2)~2Jz.  Thus we 
recover in the limit the usual Lie algebra. The differences noted in (a) and 
(b) are expressed by saying that the quantum group SUq(2) is a deformation 
o f  the enveloping algebra o f  SU(2). 

(c) Despite appearances, the inherent symmetry of three-space is not 
broken. 

For Jq ~m,  the right-hand side of equation (3.2) depends on the 
parameter q in a characteristic way. Let us define the q-integer [n]q by 

qn/2 _ _  q-n/2 
[ n ] q  ~--~ qm _ q-l/2 ~q(n--1)/2+q(n--3)/2+'''q--(n--1)/2 J n~7/ (3.3) 

Y 
n terms 

and 

[n]q! =_ [n]q[n -- 1]q... [1]q (3.4) 

The concept of a q-integer is well-defined under the formal �9 addition 
law: 

[m]q • [n]q =_ q-"/Z[m]q + qm/2[n] = [m + n]q, m, n ~Z (3.5) 

which shows the isomorphism {[n]q } ~ 7/. 
Note that q-integers [n]q obey the rule [--n]q =--[n]q, with [0]q = 0  

and [1]q = 1. 

Remarks. (a) The defining relations of SUq(2) are invariant to 
q ._~ q -1. Similarly, q-integers obey the symmetry [n]u = [n]q_,. (The use of 
steps of unity for powers of q accounts for the convention using q 1/2.) 

(b) The q-analogs defined by Heine (1846) did not obey the q +-+ q - i  
symmetry, and the q-factorial is related to the Heine q-analog of Euler's 
factorial function by [n]q ! = q-n~" - l)/4Fq(n + 1). 
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4. WHY COMULTIPLICATION IS NATURAL IN 
QUANTUM PHYSICS 

For quantum physics the new algebraic concept is the bialgebra 
structure, involving comultiplication. To understand this new structure, let 
us take an algebra A over a field k, that is, we have the following 
operations defined: 

Multiplication: 

Unit: 

m 

A x A ~ A (4.1) 

k --~ A (given by k --*kl) (4.2) 

Now adjoin new operations that reverse the arrows in (4.1) and (4.2) 

Comultiplication: 

Counit: 

A 

A ---* A | A (4.3) 

A ---~ k (4.4) 

There are more details--as we have seen in Section 2 - - b u t  in essence 
this structure, (4.1)-(4.4), is a Hopf  algebra. This leaves open the question: 
What is comultiplication in physical terms? 

To answer this, consider the angular momentum operator J in quan- 
tum mechanics. Both classically and quantum mechanically one can add 
angular momenta, that is, 

Jtotal ~ j(l) + j(2) (4.5) 

More precisely, when we add angular momenta we use an action on 
product kets: 

]~')tota, = I,/-' ;><,> | (4.6) 

Thus the action implied by (4.5) on (4.6)--written in a more explicit and 
mathematically precise form-- i s  

Jtotal ~ j ( l ) |  1 + 1 | (4.7) 

This action is, in effect, a comultiplication A: 

A(J) = J |  + l |  (4.8) 

We conclude: The vector addition of  angular momentum in quantum physics 
defines a (commutative) comultiplication in a bialgebra. 
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Let us now complete the definition of the quantum group S U q ( 2 )  by 
giving the explicit coalgebra structure. For SUq(2) the coproduct is defined 
by 

A(J+ ) - q --'z/2 | j+_ + j+ | qSz/2 (4.9) 

A(J~) - 1 | +J~ | 1 (4.10) 

[Note that (4.9) breaks the q ~-~ q - t  symmetry.] 
The remaining Hopf algebra operations are 

e(1) = 1 (4.11) 

e(JT) -- 0 (4.12) 

7(jq_+ ) = _ q =-1/2jq+_ (4.13) 

7(J q) -- - J q  (4.14) 

Remarks. (a) One of the fundamental new features of quantum 
groups such as SUq(2) is that one now has a n~176 comultiplica- 
tion. [Note that A in (4.9) is noncommutative.] 

(b) This means tht the "addition of q-angular momenta" depends on 
order. [This in turn makes braiding (Kauffman, 1990) possible.] 

(c) The matrices that effect the comultiplication of irreps are the 
q- Wigner -  Clebsch - Gordan coefficients (Biedenharn, 1990). 

5. SOME FURTHER DEVELOPMENTS IN QUANTUM GROUPS 

5.1. q-Analog-Boson Operators (Biedenharn, 1989; Macfarlane, 1989; 
Sun and Fu, 1989) 

Consider the q-creation operator a q and its Hermitian conjugate the 
q-destruction operator (I q. The q-boson vacuum ket [0}q is defined by 

~ql0)q - 0 (5.1) 

We postulate the algebraic relation 

~tq aq  _ q l/2aqCl q : q--gq/2 (5.2) 

where Nq is the (Hermitian) number operator with 

[Nq, a q] = a q (5.3) 

[Nq, ~q] = - &  with NqlO } = 0 (5.4) 

This algebra is a q-analog generalization o f  the Heisenberg algebra, 
which is recovered in the limit q ~ 1. 
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The normalized ket vectors (orthonormal n-quanta eigenstates) have 
the form 

[n)q = ([n]q [) - l/2(aq)n[O)q (5 .5)  

where [n]q[ is a q-analog of the factorial function and (aq) " denotes the nth 
power of a q. 

5.2. A q-Analog of the Harmonic Oscillator 

Let us define the q-momentum operator by 

Pq = i (aq - aq)  (5.6) 

and the q-position operator by 

Qu \ ~ m ~ J  (aq -1- (lq) (5.7) 

The Hamiltonian for this q-oscillator is then 

hco 
~q : ~ (Clqaq -}- aqaq) (5 .8)  

This q-Hamiltonian operator Jfq is diagonal on the eigenstates In )u and has 
the eigenvalues 

ho9 
~tg~q ---~Eq(n) = ~ -  ([n -k- 1]q q- In]q) (5.9) 

The energy levels are no longer uniformly spaced (except for q ~ 1). For 
q >> 1, the energy levels become exponential. 

The uncertainty relation for q-position and q-momentum for this 
q-oscillator is interesting. The uncertainty is minimal (and independent of 
n) only in the limit q ~ 1; the uncertainty increases with n for q r 1. Any 
attempt to measure position accurately in a q-harmonic oscillator will 
necessarily involve large energies and a corresponding characteristic in- 
crease in the intrinsic uncertainty. This property and similar ones have led 
to suggestions (Majid) that quantum groups might be of help in controlling 
infinities in quantum field theories. Let us note that there are other 
definitions of a q-harmonic oscillator in the (now large) literature (Atak- 
ishiev and Suslov, 1991). 

We remark that the q-bosons allow a q-analog to the Jordan- 
Schwinger map (Biedenharn, 1989). This mapping nicely leads to a deter- 
mination of the q-WCG coefficients, and, in fact, to the ( q -  3n j )  
coefficients (Biedenharn, 1990). 
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5.3. Representation Theory 

For the generic case (q ~ ~ or, more generally, q not a root of unity), 
we have the fundamental result of Lusztig (1988) and Rosso (1988) for a 
complex simple Lie algebra g. 

Theorem. Let dim g < ~ ,  and assume that q is generic. Then an 
irreducible integrable g-module can be deformed to the quantum group 
module Uu(g ). The dimensionality of each weight space is the same as in 
the case q = 1. 

Physicists are interested in explicit bases for representations and we 
deduce (Biedenharn, 1991) from this theorem the following specific infor- 
mation: 

Theorem. For q6~ ,  a unitary SUq(n) irrep labeled by the Young 
frame [rain, m : ~ , . . . ,  m~_ in, 0] is a flag manifold whose individual vectors 
are labeled by a Gel ' fand-Weyl pattern (mis) exactly as for the undeformed 
case (q = 1) of SU(n). 

This allows us to state a general result (Biedenharn, 1991) giving the 
algebraic matrix elements of all q-group generators (in the Weyl-Chevalley 
basis) between vectors in this manifold for all SUq(n): 

Theorem. Algebraic matrix elements ((m')[X~[(m)), for (m'),(m) 
Gel ' fand-Weyl patterns in SUq(n), and X~ a q-generator in the Chevalley- 
Weyl basis are identical to matrix elements in SU(n), labeled similarly, 
except that each linear algebraic factor (x) is replaced by the q-number 
algebraic factor [x]q. In particular, there are no q-factors (factors of the 
form q~). 

5.4. Multiparametric Deformations 

Once one has learned how to define quantum groups as one-parameter 
deformations of a Lie group, it is very natural to ask about the possibility 
of multiparametric deformations. For simple Lie groups the answer was 
given by Drinfeld (1987): the one-parameter deformation is unique (to 
within twisting). 

This result has been generalized recently by Truini and Varadara- 
jan (1992) to reductive Lie groups and for these groups they have deter- 
mined the most general multiparametric deformation. (A reductive Lie 
group has a Lie algebra which is a direct sum of a semisimple Lie al- 
gebra and an Abelian Lie algebra.) For such groups, the most general 
deformation is a specialization of a universal deformation having 
�89 - C)(N + C - 1) + M parameters, where N is the rank of the reductive 
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algebra, M is the number of simple components, and C is the dimension of 
the center. 

6, THE VIEWPOINT OF NONCOMMUTATIVE GEOMETRY 

In the discussion of quantum groups so far we have concentrated on 
the algebraic aspects, which-- in  the language of Lie groups--means that 
we have looked at the "infinitesimal transformations." When we consider 
the finite transformations, a novel characteristic feature of noncommutative 
comultiplication becomes apparent: the coordinates o f  thef ini te  transforma- 
tions are noncommutative. 

To make this basic result clear, let us again consider SUq(2),  and focus 
attention on the fundamental 2 • 2 irrep matrices. One finds (Nomura, 
1990) 

where the matrix elements of this irrep matrix (the coordinate functions) 
are noncommuting objects obeying 

ux = q m x u ,  vx = ql/2xv, yv = ql/Zvy 

yu = ql/Zuy, UV = VU (6.2) 

In addition, we have the condition (the determinantal unimodular 
condition) that 

xy  - q-I/Zvu = y x  - ql/Zvu = 1 (6.3) 

Let us observe that the 2 • 2 matrices (Jq_+, Jq) which generates these 
finite transformations are themselves undeformed (this is special to the 
fundamental irrep and is not true of other irreps). The point of our 
observation is that the noncommutation of the finite coordinates is not a 
consequence of deformation, but entirely a property of the noncommuta- 
tive comultiplication defined for SUq(2).  

This noncommutativity of the coordinates of the "quantum p l a n e " -  
the underlying carrier space of the 2 • 2 irrep--is a fundamentally new 
feature of a quantum group. It means that the carrier space no longer has 
a manifold structure, but something more general involving noncommuting 
coordinates. 

Physicists, of course, are very familiar with the noncommuting coordi- 
nates of phase space and o f ten- -a t  first glance--regard the quantum 
group case as dkjh vu. This is quite mistaken! For quantum physics, the 
miracle of quantization is that hal f  the coordinates o f  phase s p a c e - - a  subset 
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having a commuting (manifold) structure--suffice. For quantum groups 
there is no such easy way out: the concept of a manifold must be 
generalized. What this ultimately means for physics is not yet known, and 
is part of the attraction of quantum groups. 

We conclude this brief review by noting that the Poincar6 group 
escapes the hypothesis of the Truini-Varadarajan theorem, so that there is 
probably no unique q-Poincar+ group. This structure is under intense study 
and at least one form of a q-Poincar6 group (Ogievetsky et al., 1991a,b) 
has noncommuting Minkowski parameters. It will be most interesting to see 
what this means for fundamental physics! 
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